Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant
نویسندگان
چکیده
BACKGROUND Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system. RESULTS An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor) was created and its growth abilities were measured in media using elemental sulfur (S(0)) and tetrathionate (K(2)S(4)O(6)) as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR) of the wild type and the Δsor mutant in S(0) and K(2)S(4)O(6) media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO) and heterodisulfide reductase (HDR), the truncated Sox pathway, and the S(4)I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media. CONCLUSION An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.
منابع مشابه
Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus
The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an "archaeal like" enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxi...
متن کاملSulfur Metabolism in the Extreme Acidophile Acidithiobacillus Caldus
Given the challenges to life at low pH, an analysis of inorganic sulfur compound (ISC) oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of ISCs. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching opera...
متن کاملThe Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus
Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I) pathway catalyzed by thiosulfate:quinol oxi...
متن کاملDraft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus.
Acidithiobacillus caldus is an extremely acidophilic, moderately thermophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and reduced inorganic sulfur compounds. Here we present the draft genome sequence of Acidithiobacillus caldus ATCC 51756 (the type strain of the species), which has permitted the prediction of genes for survival in extremely a...
متن کاملDiscovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus
Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identifi...
متن کامل